							·		
2		CONS	ULTING S	TRUCURAL	7408 те	GNER DRIVE	PHONE	(626)	376-5351
			CTV/TI EN	GINEEDS	POSEMEAD	CA 91770	FAY.	(626)	876-5351
OMEGA SQUARE	ENGINEERING	AU		GINEERS	KUSEMEAD.	CA 91770	144.	(020) 3	070-3331
Job 2014.001		date	7.22.2014	by	MC	Sheet	1	of	3
Subject:	Spider Rax	Black Wie	dow and Re	d Widow Roof I	Mounting Syste	em for Pitched	Roofto1>	(Californ	nia)
S	TRUCTUR	AL TES	STING A		SIS (STAT	IC LOAD F	RESUI	TS)	
								,	
Project:	Spider Rax	Black Wid	low and Red	Widow Roof M	Iounting System	m for Pitched R	ooftops	(Californi	a)
Location:	State of Cal	ifornia			0.		1		
Client:	Spider Rax								
Applicable (odes.								
2013 Califor	vues: nia Building C	ode (Based	$a_{\rm r}$ the 2012	International T	uilding (a da)				
ASCE 7-10 N	Ainimum Desig	m Loads fo	or Buildings	and Other Strue	stures by ASC	E/SEL 2010			
2012 Internat	ional Resident	ial Code	Ji Dununigs	and Outer Struc	tures, by ASC	E/SEI, 2010			
2012	iona neoraem	iui Oode							
Material Spo	ecifications for	r testing							
7/16" thick C	SB sheathing,	24/16 Pane	el Index. 4ft	wide by 8ft long	5				
Extruded Alur	ninum (See spe	ecifications). Includes b	racket(foot/pan	eJ mount) and c	lamp			
Kwikseal IW	oodbinder#12x	1.5" screw	(5per mount). See specification	ons	1			
#12 wood scre	ew toconnect 2x	4 framing							
2x4 Doug Fir	-Larch framing	5							
3/8" A307 Th	readed rod, nu	t and wash	er						
5/8" thick Ply	wood sheathin	g							
Light gage ste	el framing (Po	sts, ties and	d clips)						
90 lbs concret	90 lbs concrete mix bags (19 total)								
Test Objectiv	Test Objectives								
Roof mounts tested to verify capacity (and factor of safety) against null out and lateral shear forces as well as deflections									
/ 1 / Channel Pull out and fateral shear forces, as well as deficitions.									
Test setup (P	ull out forces)								
2x4 doug fir f	raming is attacl	hed to light	t gage steel :	framing. OSB S	heathing is atta	ached to 2x4 dor	ug fir fra	ming	
Mounts are attached to OSB sheathing with WoodBinder KwikseaJ II #12 screws, 3in min from edge of OSB									
Threaded rod is connected to roof mount and attached to plywood sheathing loading platform									
Min edge distance of 3" from									
	sheathing	to screw			/	/ ,		000	1
							► !2x4	Framing	1
					1		I		

Design Assumptions

Omega Square Engineering has reviewed the Spider Rax Black and Red Widow RoofMounting system with testing data and analytical procedures, and certifies that the roofmounts, as specified above in the design assumptions, can withstand a wind pressure equivalent to a wind speed (strenght level) of approximately <u>120mph**</u>. The mounting fasteners performed as expected against axial and shearforces in the OSB.

Test procedure and results (Lateral Shear forces per individual mount)

East test setup configuration was loaded at a rate of 100 Lbs/min with a hydraulic jack and verified with a digital force gauge. The average shear load was 1191 lbs. per mount.

Design Assumptions and conclusions

- 1 Basic Wind Speed for Risk Category II per ASCE 7-10 (Strength level, excluding Special Wind Regions)
- 2 Maximum mean roof height of no more than 30'-0" as defined by ASCE 7-10
- 3 Exposure Category B, C or Das defined by ASCE 7-10
- 4 Dry service conditions (proper water proofing tobe installed)
- 5 Roof sheathing minimum thickness of 7/16" OSB. Panel Index 24/16, with rafters spaced at 24" o.c. max.
- 6 Four PV mounts per PV module, such that adjacent modules share two PV mounts
- 7 Array may be located within zones 1, 2 for hip or gable roofs with a min pitch of 7° to a maximum pitch of 45°
- 8 *Design Snow Load 40 lbs/ft²
- 9 Fasteners installed per manufactured specifications
- 10 (5) fasteners per mount
- 11 Structure is considered an enclosed building

CONSULTING STRUCURAL AND CIVIL ENGINEERS		7408 tegner drive rosemead. CA 91770		PHONE: (626) 376-5351 fax: (626) 376-5351					
Job 2014.001		date	7.22.2014	by	MC	Sheet	3	of	3
Subject: Spider Rax Black Widow and Red Widow Roof Mounting System for Pitched Roofto1>s (California)									

Design Assumptions

- 12 Analysis of the mount is based upon the maximum effects of either the largest gravity loads or wind uplift loads. The point loads (either positive or negative) can act in either direction depending on the type of loading (i.e. wind, snow... etc)
- 13 Modules may be installed in landscape or portrait orientation
- 14 Modules may have maximum dimensions of 39" in width and 77" in length
- 15 Terrain Topographic factor Kzt = 1.0

Omega Square Engineering has reviewed the Spider Rax Black and Red Widow RoofMounting system with testing data and analytical procedures, and certifies that the roofmounts, as specified above in the design assumptions, can withstand a wind pressure equivalent to a wind speed (strenght level) of approximately <u>120mph**</u>. The mountingfasteners performed as expected against axial and shearforces in the OSB.

Sincerely

Manuel Chan, PE SE

This engineering report verifies that Omega Square Engineering has provided independent observation for loads testing as described in this report. The results of this load test reflect actual deflection values and are generally accepted as the industry standard for testing module mounting systems. Omega Square Engineering does not field check installations or verify that the mounting system is installed as described in this engineering report.

Omega Square Engineering does not express an opinion as to the load bearing characteristics of the structure the mounting system/modules are being installed on.

Installer shall verify proper flashing and/or protection to weather of the roof mount after installation. Omega Square Engineering does not express an opinion of the after installation conditions of the equipment.

*Based on minimum provisions on ASCE 7-10, Chapter 7. (Case Study areas are not considered) **As described on Figure 26.5-1A of the ASCE7-I OStandardfor Min. Design Loadsfor Buildings & other Structures Values are nominal design 3-second gust wind speed in miles per hour

Attachments:

- 1 Related ASCE 7-10 tables and figures
- 2 Black and Red Widow Roof Mount specifications
- 3 Kwikseal II Wood Binder fastener specifications

Figure 26.S-IA Basic Wmd Speeds for Occupancy Category II Buildings and Other Structures. Notes:

- 1. Values are nominal design 3-second gust wind speeds in miles per hour (mls) al 33 ft (\Om) above ground for Exposure C category.
- 2. Linear interpolation between contours is pennitted.
- 3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
- 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shaU be examined for unusual wind conditions.
- 5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability= 0.00143, MRI= 700 Years).

Figure 26.5-IA (Continued)

CHAPTER 26 WIND LOADS: GENERAL REQUIREMENTS

*Directionality Factor has been calibrated with oombinations of loads specified in Chapter 2. This factor shall only be applied when used in conjunction with load combinations specified in Sections 2.3 and 2.4.

CJJAPIBR 26 WIND LOADS: GENERAL REQUIREMENTS

ble 26.11-1 Internal Pressure Coef	fficient, (GC,,,)
closed, Partially Enclosed, and Open Build	dings Walls & Roofs
Enclosure Classi	fication (GC _{pi})
Open Buildings	0.00
Partially Enclosed Build	ings +0.55 -0.55
Enclosed Buildings	+0.18 -0.18
 Notes: I. Plus and minus signs signs the from the internal surface 2. Values of (GC_p) shall be 3. Two cases shall be constrequirements for the app (i) a positive value of (ii) a negative value of (ii) a negative value of (iii) a negative value of (iiii) a negative value of (iiii) a negative	gnify pressures acting toward and away es, respectively. we used with q, or ql, as specified. sidered to determine the critical load propriate condition: (GC_{pi}) applied to all internal surfaces GC_{p} applied to all internal surfaces

th

i.

Velocity Pressure Exposure Coefficients, Kb and Kz

Table 30.3-1

Height above ground level, z		Exposure				
			I	ŕ		
		В	С	D		
ft	(m)					
0-15	(0-4.6)	0.70	0.85	1.03		
20	(6.1)	0.70	0.90	1.08		
25	(7.6)	0.70	0.94	1.12		
30	(9.1)	0.70	0.98	1.16		
40	(12.2)	0.76	1.04	1.22		
50	(15.2)	0.81	1.09	1.27		
60	(18)	0.85	1.13	1.31		
70	(21.3)	0.89	1.17	1.34		
80	(24.4)	0.93	1.21	1.38		
90	(27.4)	0.96	1.24	1.40		
100	(30.5)	0.99	1.26	1.43		
120	(36.6)	1.04	1.31	1.48		
140	(42.7)	1.09	1.36	1.52		
160	(48.8)	1.13	1.39	1.55		
180	(54.9)	1.17	1.43	1.58		
200	(61.0)	1.20	1.46	1.61		
250	(76.2)	1.28	1.53	1.68		
300	(91.4)	1.35	1.59	1.73		
350	(106.7)	1.41	1.64	1.78		
400	(121.9)	1.47	1.69	1.82		
450	(137.2)	1.52	1.73	1.86		
500	(152.4)	1.56	1.77	1.89		

Notes:

1. The velocity pressure exposure coefficient K_2 may be determined from the following formula:

For 15 ft. $x_z x_z_g$ For z < 15 ft.K, = 2.01 $(z/z_g)^{2t}a$ K, = 2.01 $(15/z_g)^{2ta}$

Note: z shall not be taken less than 30 feet in exposure B.

2. a and z_g are tabulated in Table 26.9.1.

3. Linear interpolation for intermediate values of height z is acceptable.

4. Exposure categories are defined in Section 26.7.

MINIMUM DESIGN LOADS

- 3. Plus and minus signs signify *pressures* acting toward and away from the surfaces, respectively.
- 4. Each component shall be designed for maximum positive and negative pressures.
- 5. Values of GP for roof overhangs include pressure contributions from both upper and lower surfaces.
- 6. For hip roofs with $7^{\circ} < 0$ 27°, edge/ridge strips and pressure coefficients for ridges of gabled roofs shall apply on each hip.
- 7. For hip roofs with 0 25° , Zone 3 shall be treated as Zone 2.
- 8. Notation:
 - a: IO percent of least horizontaJ dimension or 0.411, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m).
 - h: Mean roofheight, in feet (meters), except that eave height shall be used for $0 10^{\circ}$.
 - 0: Angle of plane of roof from hori7...ontal, in degrees.

338

Technical Information

Mood Binder

SEALTITE BUILDING FASTENERS

Features and Benefits

- Fastener is designed to attach steel roofing & • siding used in post-frame & residential metal roofing applications.
- Threads transition from fine to coarse to generate superior holding strength in various wood substrates.
- Sharp Point & pronounced lead thread • consistently drills high tensile 29 & 26 gauge steel with no "point walking."
- Type 17 point reduces metal shavings that can embed themselves in the rubber washer.
- EPDM rubber is vulcanized to a galvanized steel washer to form an excellent seal even when driven at an angle.

SIZE	CARTON QTY.	WEIGHT/M
10 x 1"	3000	7.8
10 x 1 1/2"	2500	9.9
10 x 2"	2000	12.2
10 x 2 1/2"	1500	14.3
10 x 3"	1000	17.2
12 x 3/4" Stitch	2500	8.8

NOTES: All strength values shown below are ultimate values, expressed in LBS. Apply an appropriate safety factor to obtain design limits.

PULL OUT STRENGTH					
SUBSTRATE	PENETRATION	VALUE			
3/4" PLY		707			
5/8" PLY		590			
1/2" PLY		400			
7/16" OSB		310			
2 X Y. PINE*	1"	1052			
2 X Y. PINE*	FULL	1552			
2 X SPF*	1"	492			
2 X SPF*	FULL	1042			
2 X 0AK	1"	1894			

* Y.PINE (Yellow Pine) * SPF (Spruce Pine Fir)

PULL OVER STRENGTH LBS. ULT.						
SUBSTRATE	GAUGE	THICKNESS	VALUE			
AZ55 Galvalume	29	.015	378			
AZ55 Galvalume	26	.019	629			
AZ55 Galvalume	24	.024	721			

FOR PROPER APPLICATION, THE USE OF IMPACT DRIVERS ARE NOT RECOMMENDED FOR POWDER COATED OR ANY WET PAINTED FASTENER

60 IN-LBS. NOM. SHEAR STRENGTH 1547 LBS. Hex Washer Head with EPDM rubber washer provides a watertight **Sharp Point** Type 17 The combination of the Type 17 point & transition thread from fine to coarse generates superior drill speed in metal & holding strength in wood substrates APPLICATIONS

POWDER COATED 📇

HEAD STYLE

1/4" HWH

POINT DIAMETER

30° Sharp Point Type 17 **MAJOR DIAMETER**

.210/.200

MINOR DIAMETER .130/.126 **BONDED WASHER DIAMETER**

.472

HEAD ACROSS FLATS

.247/.244 **ULT. TENSILE STRENGTH** 1904 LBS. **MIN. TORSIONAL STRENGTH**

seal on roof applications. Sealtite sockets are designed to allow for the added thickness of the powder coat.

> ST Magnetic Sockets are available for powder coated fasteners

6357 Reynolds Road Tyler, Texas 75708 | P.O. Box 4515, Tyler, Texas 75712 | 800-352-4864 | 903-592-2826 | 800-352-3940 Fax | 903-592-1583 Fax 9950 Princeton Glendale Rd. Cincinnati, OH 45246 | 800-944-8920 | 513-874-5905 | 800-944-4183 Fax | 513-874-5903 Fax

Copyright 2014© Hargis Industries Inc DBA Sealtite Building Fasteners. All rights reserved.

www.sealtite.com